Vector Calculus Summary

Line integrals

- Over C of a scalar function (scalar field) f :
$\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$
Or
$\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$
- Over C of a vector field
$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} P d x+Q d y \quad$ OR $\quad \int_{C} P d x+Q d y+R d z$
(These really mean $\int_{C} P d x+\int_{C} Q d y$ and $\left.\int_{C} P d x+\int_{C} Q d y+\int_{C} R d z\right)$
Note: We generally parameterize these.

Fundamental Theorem for Line Integrals

$$
\begin{aligned}
& \begin{array}{c}
\int_{C} \boldsymbol{\nabla} f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a)), \text { where } \mathbf{r}(t), a \leq t \leq b \text { describes } C \\
=f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right) \text { or }=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right) \\
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0 & \text { for all closed paths } C \Leftrightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r} \text { is independendent of path } \\
& \Rightarrow \mathbf{F} \text { is a conservative vector field } \\
& \Rightarrow \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
\end{aligned}
\end{array} .
\end{aligned}
$$

The last implication becomes if and only if and only if (\Leftrightarrow) if the partial derivatives are continuous throughout an open, simply connected region D, the domain of the vector field \mathbf{F}.

If \mathbf{F} is conservative, then $\mathbf{F}=\boldsymbol{\nabla} f$ for some potential function f, and we can use the Fundamental Theorem for Line Integrals. If \mathbf{F} is not conservative, we use the parameterized form given above $\left(\int_{C} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t\right)$, which becomes
$\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$ if C is the boundary of the closed region D, by Green's Theorem.
(Note: Green's Theorem is stated below.)
To determine whether or not \boldsymbol{F} is conservative (that is, whether or not to use the Fundamental Theorem for Line Integrals), in \mathbb{R}^{2}, check if
$\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
In \mathbb{R}^{3}, check if $\operatorname{curl} \mathbf{F}=\boldsymbol{\nabla} \times \mathbf{F}=\mathbf{0}$. If we find that \mathbf{F} is conservative, we find the potential function f by integrating:
$f=\int P d x, \quad f=\int Q d y, \quad\left(\right.$ and in $\left.\mathbb{R}^{3}\right), \quad f=\int R d z$

Green's Theorem

$\int_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$

Notes: $C=\partial D$ is the simple, positively oriented boundary curve of D. The symbol \oint_{C} is used to indicate positive orientation.

Area of a parametric surface
$A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$, where u and v are parameters
If x and y are the parameters, we have
$A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A$

Surface integrals

- Of a scalar field $f(x, y, z)$:
$\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$
Note that $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$.
- Of a vector field $\mathbf{F}(x, y, z)$:
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A$
Note: $d \mathbf{S}=\mathbf{n} d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$, where \mathbf{n} is a unit normal vector to the surface S and $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|$ is a normal vector to S.

If x and y are the parameters, we have
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A$,
for upward orientation. The signs of the integrand change for downward orientation.
Stokes' Theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

where C is the positively oriented piecewise-smooth boundary curve of S, an oriented piecewise-smooth surface.

The Divergence Theorem
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V$,
where S is the boundary surface of E, a solid region whose surfaces are continuous, with outward orientation.

